In de meetkunde zijn kromlijnige coördinaten een coördinatensysteem voor de Euclidische ruimte waarin de coördinaatlijnen gekromd kunnen zijn. Deze coördinaten kunnen worden afgeleid van een reeks cartesiaanse coördinaten door een transformatie te gebruiken die op elk punt lokaal inverteerbaar is.
Wat is een coördinatencurve?
In het cartesiaanse coördinatensysteem zijn de coördinaatcurven in feite rechte lijnen, dus coördinaatlijnen. In het bijzonder zijn het de lijnen evenwijdig aan een van de coördinaatassen … De coördinaatkrommen in poolcoördinaten die worden verkregen door r constant te houden, zijn bijvoorbeeld de cirkels met het middelpunt in de oorsprong.
Zijn cilindrische coördinaten kromlijnig?
Twee veelgebruikte sets orthogonale kromlijnige coördinaten zijn cilindrische poolcoördinaten en sferische poolcoördinaten. Deze zijn vergelijkbaar met de vlakke poolcoördinaten geïntroduceerd in 17.2, maar vertegenwoordigen uitbreidingen naar drie dimensies.
Wat zijn de orthogonale kromlijnige coördinaten?
De meest bruikbare van deze systemen zijn orthogonaal; dat wil zeggen, op elk punt in de ruimte staan de vectoren die zijn uitgelijnd met de drie coördinaatrichtingen onderling loodrecht op elkaar In het algemeen zal de variatie van een enkele coördinaat een kromme in de ruimte genereren in plaats van een rechte lijn; vandaar de term kromlijnig.
Wat is kromlijnige afstand?
Als twee punten buren zijn, d.w.z. een van de twee punten is het dichtst bij de andere, dan lijkt het normaal dat een segment de twee punten verbindt; de kromlijnige afstand tussen hen is gewoon de lengte van het segment Deze redenering geeft een idee over hoe de verbindingen tussen de punten moeten worden geweven.